

Gideon Ariel; Rudolf Buijs;

Ann Penny; Sun Chung

Introduction

- The Issue: representing orientation
 - Not a "religious" discussion about interpretation or standardization of (joint) angles (Woltring Grood)
 - But rather, a practical solution to visualization issues
- Context: visualization
 - Rendering offers a better 3D "view" than traditional methods
 - Real-time rendering is possible
 - Required hardware has become affordable
- The Math
 - Euler angles and their many "challenges"
 - Alternatives to Euler angles
 - Best alternative: quaternions
- Conclusions
- Q & A

Rendering – a better 3D view

Rendering – a better 3D view

Rendering – in real-time

Q: Why now? A: Cheap hardware for realtime rendering is available

What is "Rendering" anyway?

High level definition of:

- Graphics objects
- Lighting
- Environmental effects
- Behavior
- Physical characteristics

Calculate views:

- Computer screens
- Immersive workbench
- Head-tracked glasses

Rendering - Performance

- Performance expressed in:
 - Fill Rate (pixels per second)
 - Rendering speed (triangles per second)
 - Smoothness (frames per second)
- Status PC Hardware (mid-2000):
 - Fill Rate > 1G pps
 - Rendering > 10M tps
 - Smoothness > 100 fps
- Prices
 - PC: < \$1500
 - Graphics card: \$75/-/\$500

Let's use ... 6 degrees of freedom

- So, let's just describe "graphic objects" and their behavior (e.g. their movement over time)
- This seems easy enough: we know we can uniquely describe an object's spatial orientation on any given instant with our familiar "6 degrees of freedom"
 - 3 for position: (x, y, z)
 - 3 for attitude, Euler or Cardan angles: (ϕ, θ, ψ)
- Advantages
 - No parameter redundancy
 - This <u>seems</u> intuitive
- But

Euler Angles - Challenge 1

- There are 12 different sequences of rotations
 - XYZ; XZY; YXZ; YZX; ZXY; ZYX
 - XYX; XZX; YXY; YZY; ZXZ; ZYZ
- This is confusing
- It gets even worse when actually using them:
 - Operations are computationally expensive (involves many trigonometric calculations)
 - There are numerical instabilities (singularities)
 - Example: linear case velocity → position is easy. But when "integrating" angular velocity → Euler angles: which sequence is the right one???

Euler Angles - Challenge 2

- Gimbal lock:
 - Loss of 1 degree of freedom
 - Axes of rotation seem to "stick"
 - A real-world problem, not a mathematical artifact

Euler Angles - Challenge 3

Interpolation causes unnatural movement

Interpolation - why do I care?

Euler Angles - Alternatives

- Euler angles just have too many problems
- There must surely be better alternatives
 - 1. Rotation matrices
 - 2. Quaternions
 - 3. Euler's Axis Angle representation
 - 4. Helical (screw) Axis
 - 5. Rodriguez-Hamilton parameters
 - 6. . . .
- Only the first two alternatives are used extensively in other disciplines

Alternative 1 – Rotation Matrices

- 9 or 16 Parameters
- Advantages
 - No singularities
 - Universally applicable
- Disadvantages
 - Obviously contains redundant information for storing orientation (9 parameters for 3 DOF, or 16 for 6 DOF)
 - Operations are computationally intensive
 - Rotational interpolation is difficult

$$R = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

Alternative 2 - Quaternions

- Discovered by Sir Hamilton in 1843
- Preferred rotation operator in chemistry, robotics, space shuttle controls, 3D games, VR, etc...
- Advantages
 - Represents "pure" attitude or rotation
 - No mathematical singularities
 - Operations are computationally easy
 - Smooth and easy interpolation → great for animation
 - Impress your friends: rotate anything in 4D!
- Disadvantages
 - Completely unintuitive → fortunately not a real issue

Quaternions - what are they?

An extension to complex numbers

$$\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

Quaternion multiplication governed by:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$
 $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}$
 $\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} \neq \mathbf{i}$
 $\mathbf{k}\mathbf{i} = -\mathbf{i}\mathbf{k} = \mathbf{j}$

- Operation qvq⁻¹ rotates a vector v about the axis of q through twice the angle of q
- q⁻¹ is easy to calculate, especially for unit quaternions
- Quaternion multiplication can be used to compose rotations: product q_1q_2 represents rotations q_1 and q_2 .
- Quaternion powers can be used to iterate or divide rotations: this allows for smooth interpolation

Quaternions & Interpolation

- Quaternions are <u>very</u> suitable for animating attitude
 - Linear interpolation
 - SLERP interpolation
- Equally suitable for animating a camera (or more camera's)
 - Camera is just another object
- Position
 - Linear interpolation
 - Splines
- Other aspects
 - Scaling
 - Morphing
 - ...

Conclusions

- Rendering is a great tool for visualizing 3D data
 - Gives more information than traditional stick-figure displays
 - Real-time interaction
 - Visually appealing
 - Hardware for high-performance rendering is cheap
- Quaternions are suitable for representing orientation
 - Quaternion manipulation is mathematically easy
 - No singularities or exceptions
 - Easy interpolation for smooth animation
- This presentation is online at:

www.sportsci.com/presentations/capetown